Инструкция как делать оригами

Инструкция как делать оригами

Желаем вам творческих успехов! Алмазная вышивка мозаика. Широкую популярность она приобрела после случая с юной жительницей Хиросимы Садако Сасаки. Ирландское кружево.




Это увлечение Лэнг пронес через всю свою жизнь. Пространственное мышление, которое необходимо при сборке оригами, в определенном смысле повлияло на сферу интересов ученого — он стал опытным экспертом по полупроводниковым лазерам и оптоэлектронике.

Вначале занятие оригами помогало Лэнгу снять напряжение после основной работы. Он задумывал какой-нибудь объект, затем брал в руки лист бумаги и старался воссоздать прототип как можно точнее. Раз за разом Роберт собирал новые фигурки оригами, причем его творения становились все сложнее и реалистичнее.

Глядя на то, как умелые руки мастера оригами собирают вполне узнаваемые образы, трудно представить, что столь реалистичную модель можно было сделать всего из одного куска бумаги — без ножниц и клея. Если вы когда-нибудь серьезно займетесь оригами, то рано или поздно у вас возникнет вопрос: а что вообще можно сделать из бумаги и где предел возможностей одного листа? Долгое время четкого ответа на этот вопрос не было.

До тех пор, пока над этой проблемой не задумался Роберт Лэнг. Ответ, который он нашел, оказался удивительным и парадоксальным: складывая лист бумаги, можно сделать модель любой формы. Используя математические выкладки, ученый вывел закономерность создания образов оригами, сформулировав тем самым универсальный подход к решению любых задач. Чтобы убедить самых больших скептиков в правильности своих суждений, Лэнг написал специальную программу TreeMaker. Когда вы станете настоящим мастером оригами и устанете от всяких журавликов и зайцев, вспомните об этой программе.

С ее помощью вы сможете сделать план для сборки любой придуманной вами фигуры. Работает TreeMaker так: пользователь создает набросок из линий, указывая примерные очертания создаваемой модели. Построив «скелет» нужной формы, программа генерирует развертку, отмечая на ней топологию сгибов бумаги.

Хотим обратить ваше внимание на то, что программа не делает идеальную развертку для придуманной фигурки оригами. Согласно математическому методу, разработанному Лэнгом, сгенерированная развертка является базовой основой будущей фигурки.

Довести ее до точных контуров собирателю оригами придется уже самому. Например, программа покажет основу для формирования рогов бумажного жука, но их ширину и направление нужно подбирать самостоятельно.

По мере того как ученый набирался опыта в сборке, он обратил внимание на то, что «детская забава» может быть использована для решения очень многих вполне серьезных проблем. В конечном итоге он вообще оставил свою работу в Силиконовой долине и посвятил все свое время практической стороне оригами. К примеру, в году к Лэнгу обратился концерн Mitsubishi с просьбой сделать необычную оригами-презентацию автомобиля.

Использование оригами в рекламе — не редкость, но если присмотреться, можно обнаружить, что в большинстве клипов сложных фигурок немного. Чаще всего показывают только одну фигурку, которая затем трансформируется во что-то другое. Создать же полноценный оригами-мир даже для короткого ролика очень сложно, ведь для этого нужно вручную сложить из бумаги сотни различных фигурок.

Реклама автомобиля Mitsubishi , над которой работал Роберт Лэнг, — один из примеров такого титанического труда. Когда ему поручили работу над этим клипом, для сборки моделей была выделена целая команда сотрудников. Но оказалось, что неспециалистам в оригами сложно быстро складывать модели даже по готовым дизайнам, созданным Лэнгом.

В итоге почти всю работу по складыванию полутора тысяч фигурок выполнили сам Лэнг и его помощница.

Инструкция как делать оригами

Есть немало людей, которые трактуют оригами по-особенному. Для них главная цель складывания бумажных листов состоит не в имитации узнаваемых форм, а в поиске способов размещения большого в малом. Как сложить лист бумаги, чтобы он занимал минимум места, но быстро и удобно разворачивался? Эта задача очень интересна и важна, поскольку ответ на нее решает множество инженерных проблем.

Как вы знаете, в большинстве современных автомобилей используются так называемые подушки безопасности. Они представляют собой аварийные надувные элементы часто из нейлона , которые мгновенно раскрываются в случае резкого столкновения автомобиля с другим транспортным средством или препятствием.

Подушка безопасности снижает вероятность удара человека о салон авто, что особенно актуально при лобовом столкновении. Очевидно, что чем больше площадь подушки и чем быстрее происходит ее раскрытие — тем больше шансов, что данная мера предосторожности спасет человеку жизнь. Эти и прочие факторы находятся в прямой зависимости от того, каким образом сложена эта подушка.

Немецкая компания EASi Engineering обратилась все к тому же Роберту Лэнгу с просьбой подсказать оптимальный вариант складывания подушки безопасности, при выборе которого срабатывание аварийного элемента происходило бы равномерно и максимально эффективно. Оценив выдвигаемые требования, Роберт пришел к выводу, что принципы для складывания оригами вполне сгодятся, чтобы аккуратно спрятать подушку безопасности под приборной доской.

К этому моменту Лэнг открыл несколько любопытных закономерностей, которые позволили ему проектировать любые развертки. Например, он увидел, что углы вокруг вершины в месте многочисленных сгибов подчиняются простому правилу. Если пронумеровать их по кругу, то сумма «четных» углов будет равняться сумме «нечетных» и будет составлять градусов.

Если посмотреть на любую развертку бумаги, то можно заметить, что число линий сгиба, уходящих вниз, отличается от числа линий сгиба в противоположном направлении, вверх, ровно на две. Это правило соблюдается для всех внутренних вершин независимо от топологии карты сгибов. Применив свои наблюдения, Роберт смог показать немецким инженерам оптимальную развертку для подушки безопасности. В другом случае к древнему искусству оригами обратились медики. Их проблема также была связана со спасением человеческих жизней.

Вопрос касался особенностей процедуры стентирования. Термин «стентирование» надеемся, вам не придется с ним столкнуться в реальной жизни означает операцию по внедрению в организм человека так называемого стента — полой трубки, которая искусственно расширяет суженный участок органа, например артерию, пищевод и другие.

Для проведения такой операции желательно, чтобы стент занимал как можно меньший объем, а после установки разворачивался до нужных размеров. В году два сотрудника Оксфордского университета Zhong You и Kaori Kuribayashi представили такой складной вариант стента.

За основу конструкции устройства, способного спасти жизнь многим людям, исследователи взяли модель оригами, знакомую многим с детства, — водяную бомбочку. Оригами — это не только моделирование бумажных или других форм. Это образ мышления, особый нестандартный подход к привычным вещам. И, к слову, сгибать можно не только материальные объекты. Например, в семнадцатом веке Джеймс Грегори и Исаак Ньютон догадались использовать в конструкции телескопа зеркало.

Тем самым они удлинили оптический путь и получили более совершенное устройство, лишенное цветных ореолов — артефактов хроматической аберрации, главного недостатка рефракторного телескопа. В конструкции телескопа с отражающим элементом траектория луча света складывалась благодаря отражению. И вот, спустя почти четыре столетия, ученые продолжают делать открытия, манипулируя формой траектории луча. Открытие, сделанное инженерами Калифорнийского университета Сан-Диего, в печатных изданиях тут же окрестили «оптическим оригами».

Ученые нашли способ уменьшить размеры оптической системы, объединив наработки Ньютона и мастеров бумажных скульптур. Исследователи взяли небольшой диск прозрачный кристалл фторида кальция и проделали в нем концентрические отверстия. Внешнее кольцо в этом устройстве служит для попадания света в данную систему. К диску применена «алмазная» огранка, а также задействуется набор отражателей, которые искусственно увеличивают оптический путь.

В центре «линзы-оригами» расположен светочувствительный датчик, на который свет попадает после многократных отражений. Один из авторов объектива нового поколения Эрик Тремблэй Eric Tremblay , кандидат технических наук в Jacobs School UCSD, утверждает, что новая оптическая система способна заменить громоздкие комплекты линз, уменьшив исходную оптическую конструкцию приблизительно в семь раз. Единственный недостаток нового объектива — по причине расположения апертуры вдоль края линзы система дает очень маленькую глубину резкости.

Впрочем, изобретатели уверяют, что этот минус в будущем будет устранен. Все схемы оригами отличает особая рациональность — в них нет лишних действий, каждый сгиб подчиняется правилам и законам геометрии.

Человек давно осознал эту особенность оригами и научился использовать ее в своих целях. Например, одна из инженерных находок оригами, которая была взята на вооружение конструкторами, — схема Миура-ори. Эту схему придумал и впервые предложил использовать японский астрофизик Koryo Miura в далеком году.

На первый взгляд кажется, что схема пересечений линий сгиба до смешного проста — представляет собой вертикальные и горизонтальные направляющие. Однако если внимательнее присмотреться, можно увидеть, что вертикальные линии не являются идеальными прямыми. Они представляют собой ребра модели, которые на развертке наклонены под углами 84 и 96 градусов.

Материал, сложенный по данной развертке, очень легко разворачивается — для этого нужно всего лишь потянуть за два противостоящих угла конструкции. А толщина сложенной модели Миура-ори зависит только от толщины используемого материала.

Как показало время, это было превосходное решение для разворачивания в космосе солнечных батарей. Метод профессора Koryo Miura позволил сократить количество двигателей, необходимых для раскладывания фотоэлементов в космосе, а также значительно упростил конструкцию в целом.

Вариант, предложенный японским астрофизиком, положил начало целому разделу в искусстве складывания бумаги, так называемому жесткому оригами.

Специалисты, которые занимались впоследствии данной областью оригами, старались найти оптимальные решения для складывания всевозможных жестких устройств с шарнирным соединением. И конечно, чаще всего жесткое оригами применялось для проектов, связанных с космосом.

В марте года был запущен Space Flight Unit — японский спутник, который вышел на орбиту и развернул в космосе комплект солнечных батарей, сложенный по схеме Миура. В году японское агентство аэрокосмических исследований провело успешный запуск и развертывание в космосе первого в мире солнечного паруса, также «упакованного» по принципу оригами.

Малая ракета S несла на себе два различных типа паруса с толщиной отражающей пленки всего 7,5 мкм. Через секунд после старта на высоте километра ракета развернула первый парус в форме четырехлистника клевера. А на высоте километров был развернут второй парус из шести сегментов.

Этот космический аппарат должен был провести испытания более совершенной модели солнечного паруса, пригодного для оснащения кораблей, которые направляются к другим планетам. Благодаря примененной схеме оригами почти двести квадратных метров сверхтонкого полотна были развернуты без малейших повреждений.

Оригами лебедь из бумаги. КАК СДЕЛАТЬ ЛЕБЕДЯ ИЗ БУМАГИ

В ближайшем будущем, предположительно в году, в космос будет запущена самая мощная обсерватория — телескоп имени Джеймса Уэбба. Он должен будет заменить устаревший легендарный «Хаббл», который уже почти четверть века находится на околоземной орбите.

Диаметр зеркала, которое будет использоваться в новом телескопе, почти в три раза больше аналогичного элемента в конструкции Хаббла — 6,5 против 2,4 метра. Складная конструкция такого телескопа довольна проста — складываются всего три компонента. И хотя телескоп имени Джеймса Уэбба еще не был доставлен на орбиту, ученые уже работают над созданием телескопов следующего поколения. Так, например, в Ливерморской национальной лаборатории им.

Лоуренса ведется разработка телескопа Eyeglass, диаметр главной линзы которого будет не менее ста метров. Роберт Лэнг разработал складную систему прозрачной линзы под названием «зонтик», благодаря которой стометровый компонент уменьшался всего до трех метров.

Если посмотреть на конструкцию, предложенную Робертом, можно увидеть, что это — самое настоящее оригами. Схема складной конструкции телескопа и Роберт Лэнг рядом с уменьшенным прототипом складной линзы.

Привычка пользоваться огромным количеством вещей несет в себе очевидное неудобство — держать под рукой все, что может понадобиться, не очень-то удобно.

Поэтому вещи принято хранить в сложенном состоянии. В компактном виде это может быть обычное кресло, в разложенном — целая кровать.

Зонт в сложенном состоянии больше похож на трость, которая незаметно стоит в углу гардероба. Зато с открытым куполом зонт защищает большую площадь от дождя или солнца. И когда человеческий мозг ищет возможность сложить ту или иную вещь, он в определенном смысле решает загадку оригами.

Когда Карлу Эльзенеру в голову пришла идея создать складную конструкцию ножа, он мыслил столь же образно, как и все те, кто часами экспериментирует с бумажным листком.

Инструкция как делать оригами

Потратив все свои средства и едва не став банкротом, он, не без помощи родственников, придумал простую и практичную конструкцию складного ножа. Компактный многоцелевой инструмент, созданный Эльзенером в году, имел всего четыре функции — лезвие, шило, консервный нож и отвертка.

Этот нож практически сразу был взят на вооружение швейцарской армией и открыл историю легендарного швейцарского ножа.

Впоследствии Карл сменил название созданной фирмы на Victoria, по имени своей матери, а когда были открыты свойства нержавеющей стали, к имени добавилась часть французского слова inoxydable «нержавеющий» , образовав хорошо знакомый бренд Victorinox. Очень простой способ складывания ножа повлек за собой большое количество модификаций. Что только не прятали конструкторы швейцарской фирмы в своем ноже — от ножниц и пинцета до фонарика, часов и напильника.

Ну а с приходом компьютерных технологий швейцарский нож вооружился еще и выдвижным модулем Flash-памяти. На данный момент у Victorinox есть несколько моделей с флешкой, в том числе и вариант с портативным SSD-накопителем внушительной емкости в один терабайт, который вдобавок ко всему еще и оснащен миниатюрным дисплеем. Конструкция швейцарского ножа очень эффективна, и многие дизайнеры активно используют эту идею для создания новых оригинальных разработок.

Аналогичный принцип складывания нужных элементов можно применить к чему угодно. Например, можно сделать швейцарский нож с набором всевозможных переходников.

Очень практично и просто. Единственный минус — малая длина такого переходника. Впрочем, при желании этот недостаток можно устранить, добавив небольшие изменения в конструкцию — автоматически сматывающийся провод.

Ведь пытались же в свое время конструкторы из Ибаха спрятать в швейцарский нож настоящую рулетку! Правда, подобная модель Victorinox в продажу так и не пошла, поскольку значения цифр на ленте рулетки были слишком малы. Швейцарский нож стал прообразом современных мультитулов, которые благодаря своей функциональности и небольшим размерам способны заменить целый набор инструментов.

Сегодня они пользуются огромной популярностью во всем мире. Знатоки оригами регулярно соревнуются между собой в сложности создаваемых конструкций и даже устанавливают рекорды. Многие из самых необычных достижений в складывании фигурок оригами зафиксированы в Книге рекордов Гиннесса.

Например, испанец Lluis Valldeneu i Bigas несколько раз удивлял сообщество любителей оригами. В году он показал кота, сделанного с использованием техники модульного оригами, который включал в себя частей. Кроме этого, он сделал самое маленькое оригами, сложив модель птички pajarita размером 0,3 мм.

Инструкция как делать оригами

Разумеется, обычным способом сделать это ему бы не удалось, слишком малы размеры модели, чтобы складывать ее руками. Луи пришлось вооружиться парой пинцетов и работать с помощью оптики, увеличивающей изображение в двадцать раз. Искусство оригами не ограничивается одним материалом. Тот же испанский любитель оригами установил еще один рекорд — как человек, сложивший модель pajarita из семидесяти разных материалов, в числе которых металл, хлеб, золото, сталь, кожа и пр.

В году британской ассоциацией оригами проведен конкурс на создание самого маленького журавлика. Победителем стал Naito Akira, который умудрился сделать его из листа бумаги площадью в три с половиной квадратных миллиметра. Его журавлик мог даже хлопать крыльями, если его потянуть за хвостик! Увлечение оригами к этому человеку пришло совершенно случайно — во время одной из конференций ему было ужасно скучно, и, чтобы как-то убить время, он достал серебряный вкладыш из сигаретной пачки и стал складывать журавлика.

Наито довольствовался лаврами "человека, который сделал самого маленького журавлика в мире" до года, пока кто-то в университете Ниигаты не повторил его рекорд. Когда Наито Акира об этом услышал, это задело самолюбие японского мастера оригами, и он решил продолжить складывать журавликов, уменьшая их размеры. Однако сделать это оказалось непросто. Бумага плохо подходила для создания микроскопической фигурки оригами, поэтому в конце концов Наито сменил материал — вместо бумаги он стал использовать тонкую полиэтиленовую пленку толщиной всего в четыре микрона.

К тому же в микромире оригами Наито столкнулся с неожиданной проблемой, которая мешала собирать фигурку — статическим электричеством.

Из-за этого природного явления журавлики в буквальном смысле улетали, как только к ним приближался инструмент мастера. Однако когда ему было 82 года, он с помощью микроскопа все же сделал фигурку из крохотного кусочка пленки размером всего 0,1х0,1 мм. Но если вы думаете, что подобный размер фигурок оригами — предел возможностей для человека, вы заблуждаетесь.

На самом деле произведения оригами могут быть меньше, намного меньше. Вплоть до размеров ДНК. Не так давно, весной года, американский биолог Пол Ротемунд Paul Rothemund из Калифорнийского технологического института анонсировал удивительное открытие, которое молодой ученый назвал ДНК-оригами.

Биолог затронул святая святых генетики — молекулярное программирование. Пол придумал, как можно придать молекуле дезоксирибонуклеиновой кислоты определенную форму. Для этого он использовал комплементарность свойство азотистых оснований образовывать пары определенных типов с помощью водородных связей при взаимодействии цепей нуклеиновых кислот.

В своем эксперименте Ротемунд задействовал так называемые «скрепки» — короткие синтетические ДНК-нити. Эти вспомогательные «скрепки» ученый рассчитывал на компьютере, а затем заказывал их синтез в лаборатории. В ходе эксперимента синтетические ДНК-нити прикреплялись в строго запрограммированных местах, стягивая основную ДНК в нужную форму. Чтобы эффектно продемонстрировать остальным свое открытие, Ротемунд начал «складывать» нити ДНК, получая вполне узнаваемые формы — буквы, знаки, фигуры.

А на основе кольцевидной нити он даже сделал множество улыбающихся смайликов. Для чего нужна эта забава с построением ДНК-фигурок? Когда Пол Ротемунд начинал заниматься оригами на наноуровне, он особо не задавался этим вопросом. Ученый даже отшучивался в интервью, утверждая, что ему очень повезло в жизни и он просто валяет дурака, еще и получая за это деньги.

Однако это его увлечение открыло перед человечеством новые перспективы создания наноустройств. Коллеги Ротемунда из того же Калифорнийского технологического института сделали функционирующий переключатель транзистор , используя технику ДНК-оригами. Такой переключатель в десять раз меньше аналогичных элементов в современном ПК. Понятно, что для того, чтобы сделать целый ДНК-компьютер, таких переключателей понадобится в миллиарды раз больше, но начало положено.

К тому же процесс создания задуманных ДНК-форм предельно прост: сборка происходит почти автоматически, следуя основным принципам формирования двойной спирали.

Нити ДНК помещаются в раствор, который доводится до температуры кипения, после чего он медленно охлаждается, и образуются желаемые формы. Уже спустя несколько лет ученые усовершенствовали метод ДНК-оригами и начали создавать трехмерные объекты — коробку, шестеренки и прочие интересные вещи. Например, удалось сделать самый маленький кувшин на свете, в объеме которого поместилось бы тысяч молекул воды. За счет использования данной технологии стало возможным с идеальной точностью транспортировать лекарства в нужную часть органа.

В будущем это, несомненно, повысит эффективность лекарств и уменьшит число побочных эффектов. Оригами имеет много общего с математикой. Это занятие очень дружит с логикой, а правила складывания фигурок подчиняются законам геометрии. В большинстве случаев можно пользоваться соответствующей инструкцией. Выглядит она как ряд иллюстраций, на которых пошагово показывается, как необходимо складывать лист.

В таких инструкциях используются общепринятые условные обозначения для упрощения их понимания. Ниже представлены основные из них.

Как сделать кораблик из бумаги с парусом. Оригами кораблик пошаговая инструкция.

Разобравшись в обозначениях, вы поймете, как сделать оригами из бумаги, и работать с инструкциями самостоятельно станет довольно просто. Рассмотрим несколько схем подробно для лучшего их понимания. Как видно, это изделие уже несколько сложнее и требует более хитрых манипуляций с бумагой. Для освоения новых техник может понадобиться не одна попытка, но после первого успеха дальнейшее использование этой техники будет вызывать меньше трудностей. Из бумаги можно сделать и полезные в быту вещи.

Почему бы не собрать вот такую коробочку, в которую можно будет сложить небольшие предметы, к примеру, конфеты? Модульное оригами - поделка, заслуживающая отдельного внимания. Такие изделия создаются из нескольких частей. Зачастую это одинаковые детали, соединяющиеся в одну поделку путем вкладывания их друг в друга.

Рассмотрим, как сделать из бумаги оригами-куб с закругленными углами. Для этого понадобятся 24 листа бумаги и немного терпения. Все 24 листа будут складываться по одной схеме, представленной на рисунках Далее они будут соединяться по четыре штуки, как представлено на рисунках Собрав 6 таких деталей, можно приступать к сбору самого куба.

Они вкладываются друг в друга следующим образом:.